Relevance of the Type III error in epidemiological maps

Waldhör Thomas and Harald Heinzl Medical University of Vienna

Department of Epidemiology, Center for Medical Statistics, Informatics and Intelligent Systems

Test for difference in maps

Two-sided test

H0: SMR=1 vs. HA: SMR≠1

Respiratory diseases

Combined test

H0: SMR=1 vs. HA: SMR≠1

How "trustful" is an observed significant test result?

Errors in classical decision making

- Type I believe in alternative hypothesis though null hypothesis is true
- Type II believe in null hypothesis though alternative hypothesis is true

What is worse than Type I and II error?

Effect reversal

Observe a significant risk in one direction but true risk is the other way round

Example effect reversal

In a district the true unknown SMR = 1.2

expected cases under H0 = 6
observed cases =1

Crude $SMR = \frac{\text{observed}}{\text{expected}} = \frac{1}{6} = 0.16$ (95% CI: 0.01-0.93)

Example effect reversal

In a district the true unknown SMR = 1.2

expected cases under H0 = 6
observed cases =1

Crude
$$SMR = \frac{\text{observed}}{\text{expected}} = \frac{1}{6} = 0.16$$
 (95% CI: 0.01-0.93)

We observe significantly decreased risk of .16 ->

we believe that true risk is <1 though it is >1

Observing a significant result in one direction though true effect is in the other direction Type III error

Kaiser¹ ticularly repugnant γ_{13} and γ_{31} errors —"errors of the third kind"—have

1) "Directional Statistical Decisions", Psychological Review, 67 (3), 1960

Directional tests

H1: SMR<1 H2: SMR=1 H3: SMR>1

Implications of **Y** and **Y** may be different

q – value

What is the probability obtaining a wrong-sided significant result if the observed result is significant?

Heinzl* H, Benner A, Ittrich C, Mittlböck M (2007). Proposals for Sample Size Calculation Programs. *European MethodsInfMed;46:655–661*.

For crude SMRs Type III and q-value may be calculated analytically

(crude SMR hardly used in spatial epidemiology)

Type III error and q-value against true SMR for # expected cases = 10

True SMR=1.2: Type III = 0.2%

q-value ~ 4%

Type III error dependent on true SMR and number of expected cases

In Spatial Epidemiology

Random effect (RE) models often used

Spatially

Unstructured and/or Structured model (BYM)

Besag J, York J, Mollié A: **Bayesian image restoration, with two applications in spatial statistics (with discussion).** Annals of the Institute of Statistical Mathematics 1991, **43**(1):1-59.

Spatially

unstructured RE models shrink to a *global* mean (e.g. mean of Austria)

structured RE models shrink to a *local* mean (e.g. mean of neighbours)

Our question

What is the effect of shrinkage of spatially structured and unstructured RE models in respect with Type III error and q-value ? Simulation of infant mortality data based on a predefined spatial risk

Simulation of infant mortality data based on a predefined spatial risk

1) Model estimation of SMR in INLA, R

2) Calculation of Type III and q-values using a decision rule based on the posterior distribution

Decision rule for being "significant"

Posterior distribution $f(\Delta/data)$

Reference treshold Δ (e.g. 1)

Cutoff prob ω_1, ω_2 (e.g. 0.8)

Two-sided "significant" decision rule:

 $P(\Delta > \Delta_{01}) > \omega_1, P(\Delta < \Delta_{02}) > \omega_2$

 $P(\Delta > 1) > 0.8, P(\Delta < 1) > 0.8$

Richardson S, Thomson A, Best N, Elliott P: Interpreting posterior relative risk estimates in disease-mapping studies. Environmental Health Perspectives 2004, 112(9): 1016–1025.

Freising 2013

Results for simulated infant mortality data for q-value for spatially **unstructured** and **structured** models (ω =0.8) in dependence on SMR and expected cases

unstructured model Shrinkage to mean of Austria

Results for simulated infant mortality data for q-value for spatially **unstructured** and **structured** models (ω =0.8) in dependence on SMR and expected cases

unstructured model Shrinkage to mean of Austria **structured** model Shrinkage to mean of neighbours

Effect reversal of estimated SMR for district Hietzing due to neighbours with larger SMRs

Parameters in simulation for the 7 districts

	Hietzing	neig	hbours			
true SMRs:	0.82, 0.92,	0.96,	1.05,	1.15,	1.16,	1.27
Expected cases:	<mark>68</mark> , 113,	124,	127,	134,	137,	148

Effect reversal of estimated SMR for Hietzing due to neighbours with larger SMRs

Parameters in simulation for the 7 districts

	Hietzing	neig	hbours			
true SMRs:	0.82, 0.92,	0.96,	1.05,	1.15,	1.16,	1.27
Expected cases:	<mark>68</mark> , 113,	124,	127,	134,	137,	148
Type III:	13%					
q-value:	50% = 13%	% /2 6%				
non-directional Power:	26%					

Conclusion

Be aware that "significant" effects may be due to effect reversal

Conclusion

Be aware that "significant" effects may be due to effect reversal

For small SMRs and small number of expected cases Type III error and q-value may be relevant