

Department of Forest Science, Professorship in Forest Biometrics and Forest System Analysis

The importance of conspecific facilitation in promoting establishment and recruitment

A case study from degraded mangrove forests

Dr. Juliane Vogt Dr. Yue Lin Prof. Uta Berger (Manuscript in Preparation)

Outline

Introduction:

Situation Concept Objectives

Description:

Study sites Measurements Hypotheses

Results:

Plant characteristics Interaction intensity Spatial point pattern

Conclusion

Mangrove forests

- High loss rates world wide
- Great efforts to restore ecosystem functions after loss
- Basis for an successful restoration:
 - Understand the behavior of pioneer trees under harsh conditions

Situation

Establishment and recruitment processes

- Main focus to competitive interactions by using resources
- Facilitation (of e.g. nurse plants) by ameliorating harsh environment often disregarded
- Balance and changes between competition and facilitation rarely considered

Conceptual model of the abundance **distribution of individual plants** along local interaction intensity under stressful conditions

Situation

Objectives

i) Describe mangrove plant characteristics on recolonizing degraded site

ii) Illustrate density related plant interactions intensities

iii) Detect spatial distribution of plants and their distances to each other

Study site

- Degraded mangrove area in Bragança North Brazil:
- Road construction 1974 resulted in destruction of higher elevated mangroves

Environmental conditions

- Between June to December drought stress
- High salinity values (95 ppt)
- Naturally recolonizing with Avicennia germinans

> Dry, hot and salty

Study site

Field design:

- 3 development stages
- 20 x 20 m
- 2 replications for each stage
- Mapping of mangroves

Field measurement

- Species composition
- x-y Position within the plot
- Plant height, diameter, crown diameter
- Distinction between seedlings and saplings

Research questions

- 1. Does the interplay between competition and facilitation shape the abundance distribution of *Avicennia* mangrove seedlings ?
- 2. Does the interplay between competition and facilitation change at different developmental stages?

Plant cha	characteristics			
	Plot 1	Plot2	Plot3	
Seedlings:				
Number	12/24	129/1722	916/937	
Saplings:				
Number	54/68	244/647	644/350	
Height (cm)	24/22	25/38	88/141	
Crown radius (cm)	6/6	7/14	19/47	

Local interaction intensity:

- Based on the Hegyi competition index (CI)
- Interplay of competition and facilitation among neighboring plants

$$CI_{i} = III_{i} = \sum_{j=1}^{N_{i}} \left(\frac{cr_{j}}{cr_{i}}\right) \left(\frac{1}{d_{ij}}\right), \quad for \quad i \neq j$$

Seedling interaction intensity

Sapling interaction intensity

L-function:

$$L(r) = \sqrt{\frac{K(r)}{\pi}}$$
 with $K(r) = \pi r^2$

Example:

Spatial point pattern

Plant interaction:

Environmental conditions:

Thank you for your attention

