Risk-prediction modelling in cancer with multiple genomic data sets: a Bayesian variable selection approach

Manuela Zucknick

Division of Biostatistics, German Cancer Research Center

Biometry Workshop, Freising, 07 November 2013
1 Introduction

2 Integration of gene expression and copy number variations in a logistic Bayesian variable selection (BVS) model

3 Proof-of-principle example: Glioblastoma

4 Simulation study: Influence of prior specifications

5 Application: medulloblastoma

6 Summary
From targeted therapy to personalised medicine

one diagnosis
uniform therapy
variable results

molecular subtypes
targeted therapy
better results

individual profile
personal therapy
optimal results

Slide by S. Pfister (University Hospital Heidelberg, Germany)
Molecular data sources

Genomics → Transcriptomics → Proteomics

- Sequencing data
- Gene expression data
- Protein expression data

DNA → RNA → Protein (sequence)

Epigenetics (Methylation, chromosome structure, …) → Splicing → Protein folding, Chemical changes, …

Epigenomics
Goal

Develop risk prediction models based on ‘omics’ data

- Prediction of clinical endpoints (therapy response, survival)
- with simultaneous selection of biomarkers
- combining several high-dimensional input ‘omics’ data sets.

Patient-based genome-wide data from several sources

- **Transcriptomics:** gene expression
- **Epigenomics:** CpG methylation
- **Genomics:** copy number variation, SNPs/point mutations

Analyse data in a (model-based) integrative manner for

- a more comprehensive picture of the disease biology,
- improved performance of risk prediction models.
Possible approaches to data integration

Hierarchical approach

Secondary molecular data
(e.g. pathways, cytogenetics, regulation by miRNA)

Primary molecular data
(e.g. gene expression, methylation)

Correlation

Clinical outcome
(e.g. patient survival, therapy response)

Same-level approach

1st data source
(e.g. copy number variation)

2nd data source
(e.g. gene expression)

Biological unit
(e.g. genomic loci)

Clinical outcome
(e.g. patient survival, therapy response)
Bayesian hierarchical model for variable selection (BVS)

BVS model with indicator variable $\gamma_i = \begin{cases} 1 & \text{, i is included} \\ 0 & \text{, i is excluded} \end{cases}$

- The model space becomes huge, of size 2^p (when no interactions included) and full exploration is unfeasible.
- For high-dimensional data ($p \gg n$) many alternative models having similar explanatory power.
- → Use of MCMC methods as stochastic search algorithms.
- We favour sparse solutions via prior distribution for model size.

Frequentist alternatives:
- Penalised regression (lasso etc.), boosting,...
(1) Logistic BVS model based on gene expression alone

\[Y_j = \begin{cases} 1 & \text{if } Z_j > 0 \\ 0 & \text{otherwise} \end{cases} \]

\[Z_j = X_{\gamma j} \beta_{\gamma} + \epsilon_j \]

\[\epsilon_j \sim N(0, \lambda_j) \]

\[\lambda_j = (2\phi_j)^2 \]

\[\phi_j \sim \text{Kolmogorov-Smirnov, i.i.d.} \]

\[\gamma \sim p(\gamma) = \prod_{i=1}^{p} \pi_i^{\gamma_i} (1 - \pi_i)^{1-\gamma_i} \]

\[\beta_{\gamma=1} \sim N(b_{\gamma} = 0, v_{\gamma} = I_{p_{\gamma}}) \]

Auxiliary variable representation for normal scale mixture distribution resulting in exact logistic regression model.

Holmes & Held (2006), Zucknick (2009)
(2) Incorporate copy number variations (CNV)

Modify the prior on the model space $p(\gamma)$

$$p(\gamma) = \prod_{i=1}^{p} \pi_i^{\gamma_i} (1 - \pi_i)^{1-\gamma_i}$$

→ Assign prior individual variable inclusion probabilities π_i using information on association between CNV distribution and model endpoint Y.

Assumptions

- Genes in deleted regions will not be expressed. Equivalently, genes in amplified regions might have higher expression. →
- Genes in regions with differential copy numbers get larger inclusion probability π.
Prior specifications for π

$$\pi_i \propto \min(1, \pi_0(1 + C \times f_{\text{dist}}(\text{CNV}, Y)))$$

- Base prior variable inclusion probability π_0
- Factor C
- Distance metrics $f_{\text{dist}}(\text{CNV}, Y)$ for ordinal distributions, e.g. $\text{loss} < \text{normal} < \text{gain}$:
 - **“Modal states distance” (MOD)**: For a sample from CNV distribution, compute the modes for both classes (mode_0 and mode_1), then: $f_{\text{dist}}(\text{CNV}, Y) = 0.5 \times |\text{mode}_1 - \text{mode}_0|$
 - **Earth mover’s distance (EMD)** (Rubner et al., IJCV 2000): minimal cost that must be paid to transform one distribution into the other (moving within order 'loss' \leftrightarrow 'normal' \leftrightarrow 'gain')
Glioblastoma

Today, the number of children dying from brain tumours is similar to child lymphoma deaths, even though incidence of brain tumours is only half as high. → Better (targeted) treatment strategies needed!

- **Known prognostic factors** in glioblastoma:
 - Loss of chromosome arm 10q
 - Mutation in the IDH1 gene or in the H3.3 histone

- **Which genes** are associated with loss of chromosome 10q or with H3.3 mutations?

Wikipedia.org
Glioblastoma data

Data:

- 40 tumour samples with
 - gene expression (GE) array data (Agilent) and
 - copy number variation estimated from Illumina 450K arrays.

- $p = 2000$ top variable GE probes and corresponding CNV data

- Endpoint: loss of chromosome arm 10q versus no loss

Prior specifications:

- $C = 100$, $f_{\text{dist}} = \text{modal states distance}$ and $\pi_0 = 5/p$

MCMC setting:

- $B = 10$ Markov chains from different starting points with

- $K = 100,000$ iterations (10,000 burn-in iterations discarded)
CNV data in typical sample with known loss of 10q

R package RJaCGH (Rueda and Diaz-Uriarte, 2007)
Glioblastoma: prior and posterior inclusion probabilities

[Graphs showing prior and posterior inclusion probabilities for different gene locations on chromosomes.]

- Prior inclusion probability $p(y_i = 1 | x, y)$
- Posterior inclusion probability $p(y_i = 1 | x, y)$

Legend:
- $p(y_i = 1 | x, y) > \pi_0$
- $p(y_i = 1 | x, y) > 5 \pi_0$
- $p(y_i = 1 | x, y) > 10 \pi_0$

Gene names include: GliS1, PPP2R2C, RSPO3, PPP1R1B, PGS3, AT14H7, MKX, DDX15, GDF10, GNAS, SNORD114-3, AGXT2L1, TM1155, HOX6A6, GCLC, CLU, S1, LECT1, RHOA, RPC3, GLIS1, PPP2R2A, RSPO2, RHOA.
Simulate training and test data sets with:

- \(n = 50 \) samples with **binary response** (tumour versus normal)
- \(p = 1,000 \) variables (genes/genomic regions)
- Correlation \(0.5 |i_1 - i_2| \) between two variables with IDs \(i_1 \) and \(i_2 \)

- Generate one random CNV region per sample (loss or gain)
- Generate **consistent CNV region in 50% of all tumour samples** (all gain)
- Add (gain) or subtract (loss) \(\log_2(2) \) to \(\log_2 \) gene expression, if gene is expressed
- \(p^* = 20 \) variables are related to response \(y \) (true model) via logistic link with effect sizes \(\beta \) (\(\rightarrow \) Prior \(\pi_0 \propto \frac{20}{p} \))
- Add measurement noise: \(\tilde{w}_{ij} = w_{ij} + \epsilon_{ij} \) with \(\epsilon_{ij} \sim N(0, 0.25) \)

- 10 genes from consistent CNV region with \(\exp(\beta^*) = (1.5, 1.5, 2.0, 2.0, 2.5, 2.5, 3.0, 3.0, 3.5, 3.5) \)
- 10 genes from outside with \(\exp(\beta^*) \)
Simulation results: $f_{\text{dist}}(\text{CNV, Y})$ versus π
Simulation results: averages across 50 simulation runs

<table>
<thead>
<tr>
<th></th>
<th>Modal states distance</th>
<th>Earth mover’s distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C)</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>(\pi_0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Number of true predictors from consistent CNV region identified with marginal posterior probability (p(\gamma_i</td>
<td>x, y) > \pi_0)</td>
<td></td>
</tr>
<tr>
<td>(1 \times k/p)</td>
<td>3.64</td>
<td>4.44</td>
</tr>
<tr>
<td>(2 \times k/p)</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>(5 \times k/p)</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>(b) Number of true predictors from consistent CNV region in individual models, averaged over the 100 models with largest joint posterior probabilities (p(\gamma</td>
<td>x, y))</td>
<td></td>
</tr>
<tr>
<td>(1 \times k/p)</td>
<td>0.24</td>
<td>0.28</td>
</tr>
<tr>
<td>(2 \times k/p)</td>
<td></td>
<td>0.90</td>
</tr>
<tr>
<td>(5 \times k/p)</td>
<td></td>
<td>1.53</td>
</tr>
<tr>
<td>(c) Average model sizes of the 100 models with largest joint posterior probabilities (p(\gamma</td>
<td>x, y))</td>
<td></td>
</tr>
<tr>
<td>(1 \times k/p)</td>
<td>11.4</td>
<td>11.5</td>
</tr>
<tr>
<td>(2 \times k/p)</td>
<td></td>
<td>35.4</td>
</tr>
<tr>
<td>(5 \times k/p)</td>
<td></td>
<td>91.8</td>
</tr>
<tr>
<td>(d) Area under the curve (AUC) values of the 100 models with largest joint posterior probabilities (p(\gamma</td>
<td>x, y)) as measured on the test data</td>
<td></td>
</tr>
<tr>
<td>(1 \times k/p)</td>
<td>0.58</td>
<td>0.60</td>
</tr>
<tr>
<td>(2 \times k/p)</td>
<td></td>
<td>0.57</td>
</tr>
<tr>
<td>(5 \times k/p)</td>
<td></td>
<td>0.57</td>
</tr>
</tbody>
</table>
Simulation results: test data ROC curves of BMA* results

*Bayesian model averaging (BMA) of the 100 models with largest joint posterior probabilities
Simulation conclusions

- True predictors have high marginal probability \(p(\gamma_i = 1|D) > \pi_0 \).
- But no highest probability model contains all true predictors.
- → Bayesian model averaging (BMA) is important.
- Also important in order to “catch” all important variables, including correlated ones.
- Modest improvement in prediction accuracy.
Medulloblastoma (Northcott et al., Nature 2012)

- Most common malignant brain tumours in children
- Current treatment: nonspecific cytotoxic therapy and surgery
- Four known molecular subgroups **WNT**, **SHH**, **Group 3**, **Group 4**, but currently no subgroup-specific targets for targeted therapy
- Known survival differences between subgroups, but not many known individual prognostic factors (ex: CTNNB1 mut in **WNT** group)
Medulloblastoma data set

Data:

- 55 training samples and 44 test samples (without CNV data)
 - gene expression (GE) array data (Affymetrix U133plus2) and
 - copy number variation estimated from Illumina 450K arrays.
- \(p = 5000 \) top variable GE probes (including 44 putative driver genes, Northcott et al., 2012) and corresponding CNV data
- Endpoint: disease progression (recurrence or death) three years after diagnosis

Prior specifications:

- \(C = 100, f_{\text{dist}} = \text{modal states distance and } \pi_0 = 10/p \)

MCMC setting:

- \(B = 5 \) Markov chains with
- \(K = 100,000 \) iterations each
CNV data in typical **WNT** subgroup sample

R package RJaCGH (Rueda and Diaz-Uriarte, 2007)
Medulloblastoma: prior and posterior inclusion probabilities
Medulloblastoma: prior and posterior inclusion probabilities
Medulloblastoma: test data ROC curves of BMA results

- C = 0: AUC = 0.53
- C = 100: AUC = 0.6
Summary

Advantages of Bayesian variable selection setup:

- Straightforward inclusion of external information through prior
- Fully probabilistic models
 - full posterior output: marginal and joint distributions
 - can be subjected to sensitivity analyses

Disadvantages:

- Larger computational burden than frequentist methods (computing time and memory usage)
- Users need to be more involved in model checking and interpretation

Software:

- R code with computationally intensive parts implemented in C
- R package BVSflex will be available on R-forge soon.
Acknowledgements

- Axel Benner (DKFZ Heidelberg)
- Stefan Pfister (DKFZ and University Hospital Heidelberg)
- Sylvia Richardson (MRC Biostatistics Cambridge)

Funding

- National Center for Tumor Diseases (NCT) Heidelberg Interdisciplinary Research Program, Project “Pediatric Brain Tumor Preclinical Testing”

Thank you!
References

- Northcott PA et al. (2012). *Subgroup-specific structural variation across 1,000 medulloblastoma genomes*. Nature 488:49–56

