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From targeted therapy to personalised medicine

one diagnosis uniform therapy variable results 

2012 

molecular subtypes targeted therapy better results 
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individual profile personal therapy optimal results 

Slide by S. Pfister (University Hospital Heidelberg, Germany)
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Molecular data sources

Genomics → Transcriptomics → Proteomics

Epigenomics
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Goal

Develop risk prediction models based on ‘omics’ data

Prediction of clinical endpoints (therapy response, survival)

with simultaneous selection of biomarkers

combining several high-dimensional input ‘omics’ data sets.

Patient-based genome-wide data from several sources

Transcriptomics: gene expression

Epigenomics: CpG methylation

Genomics: copy number variation, SNPs/point mutations

Analyse data in a (model-based) integrative manner for

a more comprehensive picture of the disease biology,

improved performance of risk prediction models.
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Possible approaches to data integration

Hierarchical approach Same-level approach

Secondary	  molecular	  data	  
(e.g.	  pathways,	  cytogene7cs,	  

regula7on	  by	  miRNA)	  

Structure	  

Primary	  	  molecular	  data	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
(e.g.	  gene	  expression,	  

methyla7on)	  

Correla7on	  

Clinical	  outcome	  	  	  	  	  	  	  	  	  	  	  	  
(e.g.	  pa7ent	  survival,	  therapy	  

response)	  

Clinical	  outcome	  
(e.g.	  pa1ent	  

survival,	  therapy	  
response)	  

1st	  data	  source	  	  	  	  	  	  	  	  	  
(e.g.	  copy	  number	  

varia1on)	  

Biological	  unit	  
(e.g.	  genomic	  loci)	  

2nd	  data	  source	  
(e.g.	  gene	  
expression)	  
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Bayesian hierarchical model for variable selection (BVS)

BVS model with indicator variable γi =

{
1 , i is included
0 , i is excluded

The model space becomes huge, of size 2p (when no
interactions included) and full exploration is unfeasible

For high-dimensional data (p >> n) many alternative models
having similar explanatory power

→ Use of MCMC methods as stochastic search algorithms

We favour sparse solutions via prior distribution for model size.

Frequentist alternatives:

Penalised regression (lasso etc.), boosting,...
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(1) Logistic BVS model based on gene expression alone

Yj =

{
1 if Zj > 0
0 otherwise

Zj = Xγjβγ + εj

εj ∼ N(0, λj )

λj = (2φj )
2

φj ∼ Kolmogorov-Smirnov, i.i.d.

γ ∼ p(γ) =

p∏
i=1

πγi

i (1− πi )
1−γi

βγ=1 ∼ N(bγ = 0, vγ = Ipγ
)

Auxiliary variable representation for normal scale mixture distribution

resulting in exact logistic regression model.

Holmes & Held (2006), Zucknick (2009)
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(2) Incorporate copy number variations (CNV)

Modify the prior on the model space p(γ)

p(γ) =

p∏
i=1

πγi
i (1− πi )

1−γi

→ Assign prior individual variable inclusion probabilities πi using
information on association between CNV distribution and model
endpoint Y .

Assumptions

Genes in deleted regions will not be expressed. Equivalently,
genes in amplified regions might have higher expression. →
Genes in regions with differential copy numbers get larger
inclusion probability π.
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Prior specifications for π

πi ∝ min(1, π0(1 + C × fdist(CNV,Y )))

Base prior variable inclusion probability π0

Factor C

Distance metrics fdist(CNV,Y ) for ordinal distributions,
e.g. loss < normal < gain:

“Modal states distance” (MOD): For a sample from CNV
distribution, compute the modes for both classes (mode0 and
mode1), then: fdist(CNV,Y ) = 0.5 ∗ |mode1 −mode0|

Earth mover’s distance (EMD) (Rubner et al., IJCV 2000):
minimal cost that must be paid to transform one distribution
into the other (moving within order ’loss’ ↔ ’normal’ ↔ ’gain’)
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Glioblastoma

Today, the number of children dying from brain tumours is similar to
child lymphoma deaths, even though incidence of brain tumours is only
half as high. → Better (targeted) treatment strategies needed!

Known prognostic factors in
glioblastoma:

Loss of chromosome arm 10q
Mutation in the IDH1 gene or
in the H3.3 histone

Which genes are associated with
loss of chromosome 10q or with
H3.3 mutations?

Wikipedia.org
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Glioblastoma data

Data:

40 tumour samples with

gene expression (GE) array data (Agilent) and
copy number variation estimated from Illumina 450K arrays.

p = 2000 top variable GE probes and corresponding CNV data

Endpoint: loss of chromosome arm 10q versus no loss

Prior specifications:

C=100, fdist = modal states distance and π0 = 5/p

MCMC setting:

B = 10 Markov chains from different starting points with

K = 100, 000 iterations (10, 000 burn-in iterations discarded)
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CNV data in typical sample with known loss of 10q

R package RJaCGH (Rueda and Diaz-Uriarte, 2007)
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Glioblastoma: prior and posterior inclusion probabilities
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Simulate training and test data sets with:

n = 50 samples with binary response (tumour versus normal)

p = 1, 000 variables (genes/genomic regions)

Correlation 0.5|i1−i2| between two variables with IDs i1 and i2

Generate one random CNV region per sample (loss or gain)

Generate consistent CNV region in 50% of all tumour samples (all gain)

Add (gain) or subtract (loss) log2 (2) to log2 gene expression, if gene is
expressed

p∗ = 20 variables are related to response y (true model) via logistic link
with effect sizes β (→ Prior π0 ∝ 20

p
)

Add measurement noise: w̃ij = wij + εij with εij ∼ N(0, 0.25)

10 genes from consistent CNV region with
exp(β∗) = (1.5, 1.5, 2.0, 2.0, 2.5, 2.5, 3.0, 3.0, 3.5, 3.5)

10 genes from outside with exp(β∗)
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Simulation results: fdist(CNV,Y ) versus π
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Simulation results: averages across 50 simulation runs
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Simulation results: test data ROC curves of BMA∗ results

∗Bayesian model averaging (BMA) of the 100 models with largest
joint posterior probabilities
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Simulation conclusions

True predictors have high marginal probability (p(γi = 1|D) > π0).

But no highest probability model contains all true predictors.

→ Bayesian model averaging (BMA) is important.

Also important in order to “catch” all important variables,
including correlated ones.

Modest improvement in prediction accuracy.
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Medulloblastoma (Northcott et al., Nature 2012)

Most common malignant brain tumours in children

Current treatment: nonspecific cytotoxic therapy and surgery

Four known molecular subgroups WNT, SHH, Group 3, Group 4,
but currently no subgroup-specific targets for targeted therapy

Known survival differences between subgroups, but not many known
individual prognostic factors (ex: CTNNB1 mut in WNT group)
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Medulloblastoma data set

Data:

55 training samples and 44 test samples (without CNV data)

gene expression (GE) array data (Affymetrix U133plus2) and
copy number variation estimated from Illumina 450K arrays.

p = 5000 top variable GE probes (including 44 putative driver
genes, Northcott et al., 2012) and corresponding CNV data

Endpoint: disease progression (recurrence or death) three years after
diagnosis

Prior specifications:

C=100, fdist = modal states distance and π0 = 10/p

MCMC setting:

B = 5 Markov chains with

K = 100, 000 iterations each
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CNV data in typical WNT subgroup sample

R package RJaCGH (Rueda and Diaz-Uriarte, 2007)
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Medulloblastoma: prior and posterior inclusion probabilities
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Medulloblastoma: prior and posterior inclusion probabilities
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Medulloblastoma: test data ROC curves of BMA results
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Summary

Advantages of Bayesian variable selection setup:

Straightforward inclusion of external information through prior

Fully probabilistic models
full posterior output: marginal and joint distributions
can be subjected to sensitivity analyses

Disadvantages:

Larger computational burden than frequentist methods
(computing time and memory usage)

Users need to be more involved in model checking and
interpretation

Software:

R code with computationally intensive parts implemented in C

R package BVSflex will be available on R-forge soon.
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