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Model class + parameter value  data 
  
Whole distribution    data 

Parametric and nonparametric 
probability models 
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P: Test whether a parameter lies in a given region 
 or 
Investigation of posterior distribution of the parameter 
 
  
NP: Test whether 2 distributions as a whole are equal 

(reference space necessary) 
 or 

Investigation of posterior distribution of a distribution 
 
 
Ref.: Lehmann 1986, 334-337; Brunner/Langer 1999, 32-33 

Parametric and nonparametric 
inference 



5 

What does the Bayesian synthesis 
Prior function     Likelihood 

 
 
   Posterior function 

mean if spaces of whole distributions are investigated 
instead of a finite-dimensional parameter space? 
 
In particular, how much “hidden information” is contained 
in an apparently uninformative prior distribution, selected 
for convenience or tractability? 
 
Ref.: Berger, J.A.S.A. 2000, 1272 right 

Parametric and nonparametric 
inference 
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“Definition”: A stochastic process is an indexed family of 
distributions over a sample space, whereby the indexing has 
to be “continuous” in a certain sense, or at least 
“measurable” 
– details are too difficult now 
 
If the sample space has dimension > 1, the process is also 
called a “random field” 
 
In our case, the sample space is the time axis [0,∞) 

 
Ref.: Doob 1953, 60+625; Møller/Waagepetersen 2004, 7-11 

Prior distributions and prior 
processes 
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A distribution of distributions can be considered as a 
stochastic process, whereby the index set is itself a 
distribution and “generates” a set of neighbourhoods 
around a given distribution on the sample space. 
 
To construct the neighbourhoods of the given distribution, 
we look at the partitions of the sample space 

 
Ref.: Navarrete et al., Stat. Modelling 2008, 4 

Prior distributions and prior 
processes 
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The historically first process of this kind is the Dirichlet 
process; for each partition, it assigns a Dirichlet distribution 
to the probabilities of each interval of the partition. 
We obtain a family of distributions around the given 
distribution on the sample space 
 
The following properties can be proven: 
- The family is conjugate to samples from the given 
   distribution (also if independently censored) 
- The distributions in the family are, with probability 1, 
   discrete 
 
Ref.: Ferguson, Ann. Stat. 1973, Gelfand et al. 2007 

Prior distributions and prior 
processes 
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The Dirichlet process was applied successfully to the 
estimation of 1 survival curve with right-censoring. 
The prior family of distributions is constructed to be 
centered around one exponential distribution 
 
The relative weight of the prior family, relative to the 
information provided by the data, is described by a non-
negative number, c 
The Kaplan-Meier estimator can be seen as the limiting case 
for c = 0 

 
Ref.: Suzarla/Van Ryzin, J.A.S.A. 1976 

Estimation of 1 survival curve 
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We follow up the example of Suzarla/Van Ryzin 1976: 

Estimation of 1 survival curve 

Time [months] Event / censoring 

  0.8 e 

  1.0 c 

  2.7 c 

  3.1 e 

  5.4 e 

  7.0 c 

  9.2 e 

12.1 c 
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The starting point is an exponential function 
 
α(u,∞) := c • e-θu 

 
whereby (u,∞) is the last element of a partition of [0,∞), c is 
a weighting parameter, and θ was selected to „fit the median 
to that of the K-M curve“ (in so far it is a double use of the 
data like in Empirical Bayes). 
 
The Dirichlet process is constructed around this function 
– again, very difficult, we illustrate the result only 

Estimation of 1 survival curve 
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Values of 0, 4, 8 and 16 
for c (in the original 
called β) give the following 
posterior curves: 
 
Jumps at event times 
become smaller with 
increasing c 
 
Curves have bend points 
(hardly visible) at censoring 
times 

Estimation of 1 survival curve 
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The Beta process is defined on [0,∞). The definition starts 
with the cumulative hazard function Λ and not with the 
distribution of the event times. 
In the non-continuous case, it is not generally true that 
1-F(t) = exp(-Λ(t)). 
One has to select a basic hazard function dΛ0

*(t). It is then 
assumed that the increments dΛ are independent and non-
negative (i.e. Λ is a Lévy process) and that the dΛ are beta-
distributed with parameters 
c • dΛ0

*(t) , c • (1-dΛ0
*(t)) 

The existence is difficult to prove. 
Ref.: Hjort, Ann.Stat. 1990 

Estimation of 1 survival curve 
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Also the Beta process is conjugated to samples (possibly 
censored) from the corresponding event-time distribution 
 
In the limit for c = 0, the estimated survival function 
becomes the Kaplan-Meier curve also here 

 
 
 
 

Ref.: Hjort, Ann.Stat. 1990 

Estimation of 1 survival curve 
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Summing up: 
 
The data-generating distribution is unknown, all that can be 
observed is the data (including censoring information) 
 
In all cases mentioned, the Bayesian synthesis behaves 
apparently “reasonably” 

 
 
 
 
 

Ref.: Bernardo/Smith 1994, 177-181 

Estimation of 1 survival curve 
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Discretization: For all distinct failure and censoring times 
ti (i=1,...,n), consider the risk set Ri. Events / censorings of 
several patients are possible for a time-point. All censoring 
is assumed to be non-informative here 
 
Consider for each patient j (j=1,...,N) the random variable 
that counts the number of events until t, this is a “counting 
process” Nj(t) 
 
Indicate by 0/1 whether patient j, while in risk set, has had 
an event at time t ∈ [ti,ti+dt). Multiple events are possible for 
a patient but only with different tis. At the boundaries, define 
t0 := 0 and an arbitrary tn+1 > tn. 
 

Comparison of 2 survival curves: 
Cox model (with counting process) 
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Risk set (special case: only 1 event / patient): 
 
 

 
 
 
 
 
 
 

(c): Censoring occurs 
(e): Event occurs 

Comparison of 2 survival curves: 
Cox model (with counting process) 

 
Patient (j) 
 

Time-point (ti) 

 t1 
 

t2 t3 . . . tn 

1 1 (c) 0 0 . . . 0 
2 1 (e) 0 0 . . . 0 
3 1 1 (c) 0 . . . 0 
4 1 1 1 (e)  0 
5 1 1 1 (e)  0 
. . . .   
: : : :   
N 1 1 1 . . . 1 (e) 
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Consider the “intensity process” of patient j: 
 Ij(t)dt := E(dNj(t) | previous events/censorings in [0,t)) 

whereby dNj(t) is the increment of Nj(t) in the interval 
[t,t+dt) and can take the values 0 or 1. Ij(t)dt is the 
probability that patient j has an event in [t,t+dt), and with 
dt → 0, Ij(t) becomes the hazard hj(t) 
 
While the patient is still in the risk set (as described by a 
further process Yj(t)), the further assumption is that a 
covariate vector Zj influences the hazard multiplicatively: 

 Ij(t) = Yj(t) • λ0(t) • ezjβ 

with unknown but fixed “baseline hazard” function λ0(t). 
Ref.: Clayton 1991, Sinha/Dey 1997, Laud et al. 1998 

Comparison of 2 survival curves: 
Cox model (with counting process) 
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Parameters in the PH model Ij(t) = Yj(t) • λ0(t) • ezjβ 

are β and λ0(t) (or its integral Λ0(t) :=  λ0(u)du, the 
cumulative hazard function). 
λ0(t) is piecewise constant, in [ti,ti+1) it is =: λ0,i. 
 
The likelihood function, given realisations of Nj(t) and Yj(t), 
is the double product 
Product (j=1,...,n) Product (all i with ti≤Tj) 
 hj(ti)dNj(ti) • e-hj(ti)(ti-ti-1) 

where Tj is the event or censoring time of patient j and hj is 
the individual hazard. 
This is, as function of the dNj(ti), prop. to a Poisson distrib.. 
Ref.: Hellmich 2001 

Comparison of 2 survival curves: 
Cox model (with counting process) 

t 

0 
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A prior distribution for dΛ0(t) (actually for the values of the 
piecewise constant function I(t)) is 

 Beta (c(t)•dΛ0
*(t) , c(t)•(1-dΛ0

*(t)) 
where dΛ0

*(t) is an initial guess, and we assign 
 c(t) := c0•e-t/(tn+1) 

whereby c0 is one parameter describing the certainty of 
dΛ0

*(t): Smaller c0 means less shrinkage and higher weight 
for the observations ti. 

Comparison of 2 survival curves: 
Cox model (with counting process) 
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Example data: 
 
 

 
 
 
 
 
 
 

Matched-pairs structure now ignored 
Ref.: Spiegelhalter et al. 1996, Lunn et al. 2013 

Comparison of 2 survival curves: 
Cox model (with counting process) 
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Prior information: 
 

c0 = 1 
 
λ0

*(t) = e-t/(tn+1), so that λ0
*(tn) ≈ 0.3 

 
 
Dependence from the prior information still needs to be 
investigated in greater detail, see e.g. Laud et al. 1998, 
p. 218-219 

Comparison of 2 survival curves: 
Cox model (with counting process) 
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WinBUGS results: 
 
 
 
 
 
 
 
 
 

dL0 is the average hazard of both groups 
Similar results for the estimated surv. curves of each group 

Comparison of 2 survival curves: 
Cox model (with counting process) 

Node statistics 
                node       mean      sd       MC error      2.5%     median  97.5% start        sample 
 
 beta 1.629 0.4021 0.01324 0.8882 1.608 2.483 4001 10000 OK 
 dL0[1] 0.03507 0.02389 3.677E-4 0.004593 0.02981 0.09427 4001 10000 t=  1 
 dL0[2] 0.03811 0.02574 4.244E-4 0.004999 0.03275 0.1009 4001 10000 t=  2 
 dL0[3] 0.02114 0.02077 3.988E-4 6.048E-4 0.01488 0.07655 4001 10000 t=  3 
 dL0[4] 0.04376 0.02971 4.617E-4 0.005707 0.0374 0.1163 4001 10000 t=  4 
 dL0[5] 0.04806 0.03237 4.493E-4 0.006248 0.04094 0.1294 4001 10000 t=  5 
 dL0[6] 0.07165 0.03888 5.804E-4 0.01601 0.06458 0.1656 4001 10000 t=  6 
 dL0[7] 0.02718 0.02615 4.699E-4 7.727E-4 0.01938 0.09738 4001 10000 t=  7 
 dL0[8] 0.117 0.0522 7.069E-4 0.03554 0.1103 0.2369 4001 10000 t=  8 
 dL0[9] 0.0371 0.03506 5.769E-4 0.001113 0.02678 0.1301 4001 10000 t=10 
 dL0[10] 0.08195 0.05177 6.631E-4 0.01088 0.07243 0.206 4001 10000 t=11 
 dL0[11] 0.1047 0.0644 9.475E-4 0.01471 0.09289 0.2597 4001 10000 t=12 
 dL0[12] 0.06194 0.05357 8.638E-4 0.002142 0.04721 0.1998 4001 10000 t=13 
 dL0[13] 0.06817 0.05965 9.734E-4 0.002006 0.0517 0.221 4001 10000 t=15 
 dL0[14] 0.06937 0.05915 9.341E-4 0.002229 0.05414 0.2193 4001 10000 t=16 
 dL0[15] 0.09532 0.0753 0.001085 0.004758 0.07646 0.2837 4001 10000 t=17 
 dL0[16] 0.1985 0.1016 0.001343 0.03303 0.1894 0.4119 4001 10000 t=22 
 dL0[17] 0.7895 0.2508 0.007882 0.1927 0.9136 1.0 4001 10000 t=23 
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Graphs for the treatment difference parameter “beta”: 

Comparison of 2 survival curves: 
Cox model (with counting process) 

beta
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All 3 curves have distributions (vertical) 

Comparison of 2 survival curves: 
Cox model (with counting process) 
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In both cases, posterior results depend from the somewhat 
arbitrary constant c0. 
Interpretation of prior information on cumulative hazard 
remains difficult. 
 
Interpretation of the limitations that arise from the 
mathematical properties of the processes still not 
sufficiently understood. 
It is unknown which prior processes could play the role of 
“reference prior” or of “Jeffreys prior”. 

Discussion 
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What is the result of an investigation of a posterior 
distribution of a distribution? 
 
We can no longer speak of a posterior plausible region for 
the parameter, we have to speak e.g. of the “posterior 
plausible extent of exponentiality” 
 
The biological meaning of such a result is still obscure 

Discussion 
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 Questions? 
 
 Thank you 
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