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Aims

Aims

Fitting a limiting response curve for dichotome variables

Usuage of different approaches including bayesian models and
quantile regression

Comparing these models in prediction and plausibility
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2. Methods
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Methods Data

Source of Data

Occurrence data stem from the ”International Co-operative
programme on assessment and monitoring of air pollution effects on
forests” (ICP Forests)

Absence at Level I monitoring plots were converted to presence if a
presence has to be expected due to expert knowledge (Bohn map). [3]

The dataset contains 7573 observations of 69 variables. 36 of these
are response variables, indicating growth of different kind of trees in
different regions

All climate variables are taken from ”WorldClim” a project which
measures different variables with a set of global climate layers
(climate grids) with a spatial resolution of 1 square kilometer [4]
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Methods Techniques

Why did we try bayesian inference?

Bayesian inference has some advantages to maximum likelihood
estimation:

Interpretation of parameter and credibility intervalls

Paramter estimations are more robust than maximum likelihood

Prior knowdledge can be modelled
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Methods Techniques

First model approach:bayesQR I

bayesQR [1] is an alternative model approach to normal logistic regression.
It uses a latent variable to predict probabilitys of dichtomic variables:

y∗i = xTi β + µi

yi = 1 if y∗i ≥ 0

yi = 0 otherwise

Advantages

Logistic regression via bayesian approach

Can model linear separable data
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Methods Techniques

First model approach:bayesQR II

Disadvantages

High computational costs

Parameter did not converge

Model function is unstable

The model is available in R as package bayesQR [2]
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Methods Techniques

Second model approach:INLA I

Markov Chain Monte-Carlo methods are often needed to evaluate posterior
distributions. However these methods have high computional costs. To
compensate these costs an alternative approach is given via the Integrated
Nested Laplace Approximations [5].
The Approach defines a new class of models: The ”latent gaussian”
models. In these models the posterior is approximated via the nested
Laplace or simplified Laplace approach:

π(x , ϑ|y) ∝ π(ϑ)π(x |ϑ)
∏
i∈I

π(yi |xi , ϑ)

∝ π(ϑ)|Q(ϑ)|
1
2 exp

[
−1

2
xTQ(ϑ)x +

∑
i∈I

log{π(yi |xi , ϑ)}

]

INLA is available in R as package INLA [6]
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Methods Techniques

Ad hoc solution I

1 The expectation E(Y|X) = h(η) is modelled

2 h is a known distribution function

3 The quantile Qτ (η|X) is fitted, where τ is an extreme low or high
quantile

Examples

Alternatives for Point 1: GLM,GAM,Boosting, Boosted Trees, Feed
forward neural network

Alternatives for Point 2: Quantile regression, Additive quantile
regression, Quantile regression forest, Expectile regression, Quantile
regression neutral networks

Example

We used a GLM for Point 1 and Quantile regression for Point 2
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Methods Techniques

Ad hoc solution II

The parameters for both approaches were exactly the same

The quantile regression only finds the linear coherence from the GLM

Example II Boosted Trees and additive quantile regression
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Methods Techniques

Ad hoc solution III
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Methods Techniques

3. Results
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Results

Summary

Usuage of different model types. To this point none of our model
approaches were sufficient for the problem.

bayesQR: First approach; Model was unstable and had high
computional costs

INLA: Faster fit than bayesQR; no real quantiles; maxima and minima
and the edge of the plots

Ad hoc solution: best approach so far; no usuage of simple methods
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Results

Discussion

Do you have improvements or critical comments for the ad hoc solution?
Which models would you use for the first and second point for the ad hoc
approach?
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Graphics to BayesQR I
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Figure : BayesQR:Partial influence plot of annual precipitation of 0.1 % quantile
(Tree=Common Spruce)
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Graphics to BayesQR II
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Figure : BayesQR:Partial influence plot of annual precipitation of 0.9 % quantile
(Tree=Common Spruce)

Klug, Welchowski ( Project partner: Karl Mellert Supervisor: Prof. Dr. Helmut Küchenhoff Statistical Consulting Institute for StatisticsLudwig-Maximilians University Munich)Statistical Consulting 07.11.2013 20 / 25



Ad hoc solution II

1 First a gam model is fitted including temperature, precipitation and a
spatial effect:

log(P(Yi = 1))

1− log(P(Yi = 1))
= β0 + f (xi1) + f (xi2) + f (xi3, xi4) + εi︸ ︷︷ ︸

η

p(η) =
exp(η)

1 + exp(η)

2 Then the partial influence of f (xi3, xi4) is predicted. The 95 %
empirical quantile is fitted. All oberservations, which have predictions
beneath this quantile are sorted out.

3 Now the model is refitted leaving out the spatial effect, so that only
the trees, which are on the upper level of the population are fitted.
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Graphics to solution II
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Figure : Plot to variable temperature of solution II
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Graphics to solution II
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Figure : Plot to variable precipitation of solution II
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INLA: Example Graphic
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Figure : Partial influence plot of annual precipitation of 0.05 % quantile
(Tree=Common Spruce)
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INLA: Example Graphic
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Figure : Partial influence plot of annual precipitation of 0.95 % quantile
(Tree=Common Spruce)
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