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Introduction

@ most dendrometrical variables
are required for
single stands

@ only a few or even zero
sample plots are located
in a stand

@ remote sensing bridge the gap
between the RFI and the need
for precise data for each
of the small stands

Figure: Spatial distribution of
RFI-plots. Dots indicate plots with
beech of DBH > 60 cm.
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Data

@ the study site is a part of the Krofdorfer Wald,
located in Hessen, Germany

@ RFI was conducted as double sampling for stratification

@ vegetation height calculated by using CIR images,
spatial resolution of the CIR images is 20 cm x 20 cm

Table: Descriptive statistics of the forests within the study area. Based

upon RFI.
beech
total (DBH>60cm)
number of trees 1746 70
DBH [cm] mean 32.65 66.04
age [years] mean 84.43 149.74
number of heights 448 50
height [m] mean 25.07 37.34
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Methods — target and auxiliary variables

@ target variable:

volume per hectare based on RFl data: V; =3 " 10000,

=1 7rr
@ auxiliary variable:
the study area was divided into 25 m x 25 m subareas,
for each descriptive statistics were calculated

. . . _ NIR—red
by using the vegetation height and the NDVI = =2
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Methods — k-MSN regression

@ k-NN estimate: IAC(X) = _aRI/(G)yi
1eN(x

@ identify nearest neighbors: d; = /(x; — x)TTA2' T (x; — x)
(Moeur & Stage, 1995)
takes into account correlations and explanatory power among
the auxiliary variables through canonical correlations analysis
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Methods — LPR, general approach

@ introduce distance dependent weights for the considered neighbours
@ any smooth function can be locally approximated by a polynomial

of certain order using a Taylor series

f)(z)
T

f(Zi)%f(2)+(2i—2)-f,(2)+(2i—2)2'fT(Z)+"'+(Zi—Z)/

2 I
=v+@-—2z) n+(z—2) 7+ +(z—2)

@ the general LPR approach can be transferred
to our spatial prediction problem:

yi = f(xi) +&;

2 I
Ry t+di-yvit+di o2+ dpy tE
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Methods — LPR, least square

@ 7o stands for the target variable y(x) at a subarea
associated with the vector of auxiliary variables x.

@ lead to a weighted least square criterion:
2
n / m
S (Vi = Lo Imdi?)” waldy)

@ w)(djj) becomes larger if djj becomes smaller,

. . _ o djj
by using kernel functions: wy(djj) = K (7)
. uniform kernel epanechnikov kernel gaussian kernel tricubic kernel
2 1 0 1 2 2 1 0 1 .I2 4 2 0 2 4 2 1 0 1

7/11 Figure: Used kernel functions.



Methods — LPR, estimation of f(x)

@ weighted least square estimator:
f(x) =4 =e (Z"TWZ)1Z" Wy

@ with
1 d11 .. d

/ = . ’W:

wa(dh)

|
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Results
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Discussion and conclusions

@ with regard to predictions of total volume LPR achieves
a slightly higher precision than k-MSN

@ for volume prediciton of large beech trees precision of LPR
is clearly higher than with k-MSN

@ the systematic error is mostly not larger than about 5 %
of the according RMSE
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Thank you

for your attention!
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