Extension of k-most similar neighbours methods by local polynomial regression

Sebastian Schoneberg
Northwest German Forest Research Station,
Dept. Ecoinformatics, Biometrics and Forest Growth
Georg-August University of Göttingen

07.11.2013

Introduction

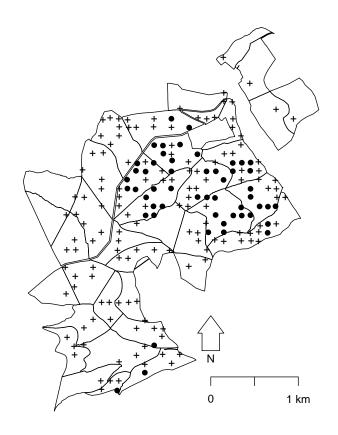


Figure: Spatial distribution of RFI-plots. Dots indicate plots with beech of DBH \geq 60 cm.

- most dendrometrical variables are required for single stands
- only a few or even zero sample plots are located in a stand
- remote sensing bridge the gap between the RFI and the need for precise data for each of the small stands

Data

- the study site is a part of the Krofdorfer Wald, located in Hessen, Germany
- RFI was conducted as double sampling for stratification
- ullet vegetation height calculated by using CIR images, spatial resolution of the CIR images is 20 cm imes 20 cm

Table: Descriptive statistics of the forests within the study area. Based upon RFI.

			beech
		total	$(DBH \ge 60 cm)$
	number of trees	1746	70
DBH [cm]	mean	32.65	66.04
age [years]	mean	84.43	149.74
	number of heights	448	50
height [m]	mean	25.07	37.34

Methods – target and auxiliary variables

- target variable: volume per hectare based on RFI data: $V_i = \sum_{j=1}^{m_i} \frac{10000}{\pi r_{ij}^2} v_{ij}$
- auxiliary variable: the study area was divided into 25 m \times 25 m subareas, for each descriptive statistics were calculated by using the vegetation height and the $NDVI = \frac{NIR-red}{NIR+red}$

Methods -k-MSN regression

- k-NN estimate: $\hat{f}(x) = \underset{i \in N(x)}{\text{ave }} y_i$
- identify nearest neighbors: $d_i = \sqrt{(x_i x)^T \Gamma \Lambda^2 \Gamma^T (x_i x)}$ (Moeur & Stage, 1995) takes into account correlations and explanatory power among the auxiliary variables through canonical correlations analysis

Methods – LPR, general approach

- introduce distance dependent weights for the considered neighbours
- any smooth function can be locally approximated by a polynomial of certain order using a Taylor series

$$f(z_i) \approx f(z) + (z_i - z) \cdot f'(z) + (z_i - z)^2 \cdot \frac{f''(z)}{2} + \dots + (z_i - z)^l \cdot \frac{f^{(l)}(z)}{l!}$$

= $\gamma_0 + (z_i - z) \cdot \gamma_1 + (z_i - z)^2 \cdot \gamma_2 + \dots + (z_i - z)^l \cdot \gamma_l$

 the general LPR approach can be transferred to our spatial prediction problem:

$$y_i = f(x_i) + \varepsilon_i$$

 $\approx \gamma_0 + d_i \cdot \gamma_1 + d_i^2 \cdot \gamma_2 + \cdots + d_i^l \cdot \gamma_l + \varepsilon_i.$

Methods – LPR, least square

- γ_0 stands for the target variable y(x) at a subarea associated with the vector of auxiliary variables x.
- lead to a weighted least square criterion:

$$\sum_{i=1}^{n} \left(y_i - \sum_{m=0}^{l} \gamma_m d_{ij}^m \right)^2 w_{\lambda}(d_{ij})$$

• $w_{\lambda}(d_{ij})$ becomes larger if d_{ij} becomes smaller, by using kernel functions: $w_{\lambda}(d_{ij}) = K\left(\frac{d_{ij}}{\lambda}\right)$

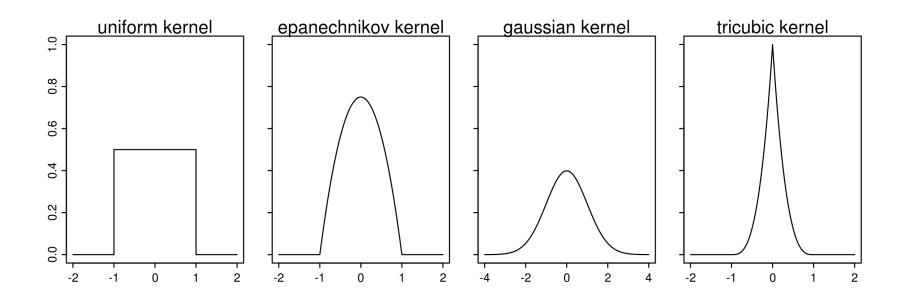
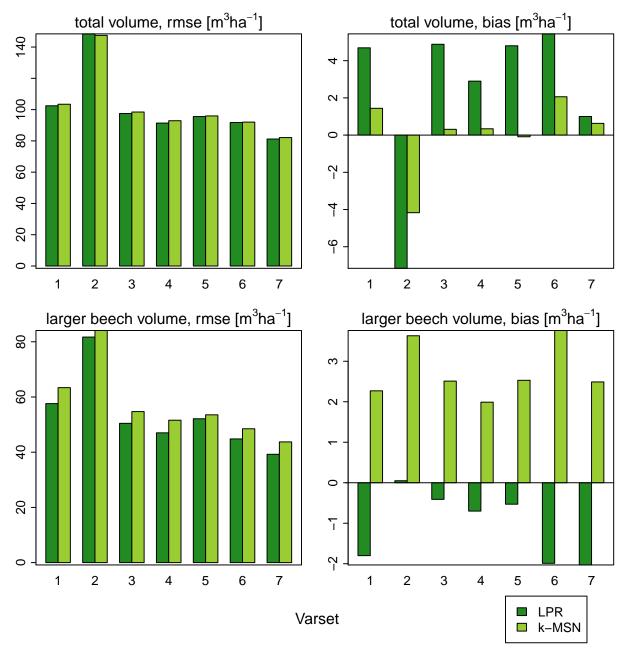


Figure: Used kernel functions.


Methods – LPR, estimation of $\hat{f}(x)$

weighted least square estimator:

$$\hat{f}(x) = \hat{\gamma}_0 = e^T (Z^T W Z)^{-1} Z^T W y$$

with $Z=egin{pmatrix} 1&d_1^1&\ldots&d_1'\\ \vdots&&&\vdots\\ 1&d_n^1&\ldots&d_n' \end{pmatrix},\; W=egin{pmatrix} w_\lambda(d_1)&&0\\ &\ddots&&\\ 0&&w_\lambda(d_n) \end{pmatrix}$

Results

Discussion and conclusions

- with regard to predictions of total volume LPR achieves a slightly higher precision than k-MSN
- for volume prediciton of large beech trees precision of LPR is clearly higher than with k-MSN
- ullet the systematic error is mostly not larger than about 5 % of the according RMSE

Thank you for your attention!

Literature

12/11

- Anttila, P. (2002). Nonparametric estimation of stand volume using spectral and spatial features of aerial photographs and old inventory data. *Canadian Journal of Forest Research*, 32(10), 1849–1857.
- Eskelson, B. N. I., Barrett, T. M., & Temesgen, H. (2009). Imputing mean annual change to estimate current forest attributes. *Silva Fennica*, 43(4), 649–658.
- Fahrmeir, L., Kneib, T., & Lang, S. (2007). Regression: Modelle, Methoden und Anwendungen; mit 51 Tabellen. Berlin; Heidelberg: Springer.
- Hudak, A. T., Crookston, N. L., Evans, J. S., Hall, D. E., & Falkowski, M. J. (2008). Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. *Remote Sensing of Environment*, 112(5), 2232–2245.
- Latifi, H., Nothdurft, A., & Koch, B. (2010). Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived predictors. *Forestry*, 83(4), 395–407.
- Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2004). Remote sensing and image interpretation. New York: Wiley.
- Malinen, J. (2003). Locally adaptable non-parametric methods for estimating stand characteristics for wood procurement planning. *Silva Fennica*, 37(1), 109–120.
- McRoberts, R. E. (2012). Estimating forest attribute parameters for small areas using nearest neighbors techniques. Forest Ecology and Management, 272, 3–12.
- Mikhail, E. M., Bethel, J. S., & Ch., M. J. (2001). Introduction to Modern Photogrammetry. Wiley, New York.
- Moeur, M. & Stage, A. R. (1995). Most similar neighbor: An improved sampling inference procedure for natural resource planning. *Forest Science*, 41(2), 337–359.
- Nothdurft, A., Saborowski, J., & Breidenbach, J. (2009). Spatial prediction of forest stand variables. *European Journal of Forest Research*, 128(3), 241–251.
- R Core Team (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
- Saborowski, J., Marx, A., Nagel, J., & Böckmann, T. (2010). Double sampling for stratification in periodic inventories-infinite population approach. Forest Ecology and Management, 260(10), 1886–1895.
- Straub, C., Weinacker, H., & Koch, B. (2010). A comparison of different methods for forest resource estimation using information from airborne laser scanning and CIR orthophotos. *European Journal of Forest Research*, 129(6), 1069–1080.