Motivation	Data	Methods	Results	Discussion

Spatio-temporal Modeling of Roe Deer Hunts

Arne Nothdurft

Forest Research Institute Baden-Württemberg, Department of Biometrics and Informatics

> 4–8 November 2013 Biometry Workshop, Freising

Arne Nothdurft

Motivation	Data	Methods	Results	Discussion
Goals				

O Detect spatio-temporal trends in roe deer hunting.

Motivation	Data	Methods	Results	Discussion
Data				

Roe deer hunts:

- daily records of hunts
- in 42 administrative districts of the Baden-Württemberg state forest service
- for the hunting seasons 2006,...,2010 (May 1 January 31)

© Wikipedia

Motivation	Data	Methods	Results	Discussion
Methods				

We observe the hunts y_{ijk} , representing count data,

- on day $k = 1, \ldots, 276$
- of season j = 2006, ..., 2010
- in discrete region $i = 1, \ldots, 42$.

We assume

 $y_{ijk} \sim \text{Poisson}(\lambda_{ijk})$.

Hereof, the mean

$$\lambda_{ijk} = A_i \pi_{ijk}$$

is the product of the constant area A_i of region *i* and the rate π_{ijk} .

Motivation	Data	Methods	Results	Discussion
Methods				

Assume a latent Gaussian model with linear predictor on the logarithmic scale

$$\eta_{ijk} = \log(\pi_{ijk}) = \beta_0 + \sum_{m=1}^M \beta_m z_{ijk}^{(m)} + \sum_{l=1}^L f_l\left(u_{ijk}^{(l)}\right),$$

with

- a vector of unknown fixed coefficients $\beta = (\beta_0, \beta_1, \dots, \beta_M)'$ for the covariates $\boldsymbol{z} = (x^{(1)}, \dots, x^{(M)})'$
- a collection of unknown functions $\boldsymbol{f} = \{f_1(\cdot), \dots, f_L(\cdot)\}$ for the covariates $\boldsymbol{u} = (u^{(1)}, \dots, u^{(L)})'$

Motivation	Data	Methods	Results	Discussion
Methods				

Assume

- $m{x}$ to be a latent Gaussian field holding $m{\eta}$, $m{eta}$, $\{f_l\}$
- it's density $\pi(\boldsymbol{x}|\boldsymbol{\theta}_1)$ to be Gaussian with zero mean and precision matrix $\boldsymbol{Q}(\boldsymbol{\theta}_1)$ with hyperparameters $\boldsymbol{\theta}_1$
- $\pi\left(oldsymbol{y}|oldsymbol{x},oldsymbol{ heta}_2
 ight)$ as distribution of the observable response variable

Goal of Bayes inference:

to compute posterior marginals of the Gaussian variables

$$\pi(x_i|\boldsymbol{y}) = \int \pi(x_i|\boldsymbol{\theta}, \boldsymbol{y}) \,\pi(\boldsymbol{\theta}|\boldsymbol{y}) \,\mathrm{d}\boldsymbol{\theta}$$

as well as of the hyper-parameters

$$\pi\left(heta_{j}|oldsymbol{y}
ight)=\int\pi\left(oldsymbol{ heta}|oldsymbol{y}
ight)\mathrm{d}oldsymbol{ heta}_{-j}$$

Motivation	Data	Methods	Results	Discussion
Methods				

The INLA (integrated nested Laplace approximations) method is here used as computationally cheaper alternative to MCMC to obtain the analytically intractable posterior marginals.

Motivation	Data	Methods	Results	Discussion
Methods				

The linear predictor is

$$\begin{split} \eta_{ijk} = & \beta_0 + \beta_1 \cdot \texttt{prec}_{ijk} + \beta_2 \cdot \texttt{temp}_{ijk} + \beta_3 \cdot \texttt{sprucedec}_i \\ & + f_{season} \left(k \right) + f_{week} \left(g(jk) \right) + \omega_j + v_i \end{split}$$

with

- $prec_{ijk}$: median precipitation on day k of season j in region i
- temp $_{ijk}$: temperature anomaly
- sprucedec_i: decrease of spruce [%] from NFI2 to NFI3
- $f_{season}\left(k\right):$ nonparametric seasonal effect for the hunting season
- $f_{week}(g(jk))$: nested seasonal effect for the calendar week; here $g(jk) \in \{1, \dots, 7\}$ yields the weekday
- ω_j : iid random error for the hunting season
- v_i : spatially structured error

Motivation	Data	Methods	Results	Discussion
Methods				

The spatially structured error builds a Markov Random Field (MRF) on discrete locations (regions). It is modeled using a conditional autoregressive structure according to the Besag-York-Mollié specification

$$\begin{array}{l} v_i \ | \ v_{i \neq j} \sim \operatorname{Normal}\left(m_i, s_i^2\right) \ , \ \text{with} \\ m_i = \frac{\sum_{j \in \mathcal{N}(i)} v_j}{\# \mathcal{N}(i)} \quad \text{and} \quad s_i = \frac{\tau_v^{-2}}{\# \mathcal{N}(i)} \end{array}$$

Vague log Gamma priors are used for the spatial effect

 $\log \tau_{\upsilon} = \log \Gamma \left(1, 0.0005 \right)$

Motivation	Data	Methods	Results	Discussion
Methods				

・ロト ・部ト ・ヨト ・ヨト

Motivation	Data	Methods	Results	Discussion
 Seasonal trend –	Hunting seaso	on		

Motivation	Data	Methods	Results	Discussion
Random error foi	r hunting seaso	on		

≪ ≣⇒

 Motivation
 Data
 Methods
 Results
 Discussion

 Fixed linear trend for temperature anomaly

Motivation	Data	Methods	Results	Discussion
Fixed linear trend	l for precipitati	on		

 Motivation
 Data
 Methods
 Results
 Discussion

 Fixed linear trend for Spruce decrease

Posterior density [Decrease of Spruce]

Motivation	Data	Methods	Results	Discussion
Spatial effec	ts			
Post	erior mean of the spatial effect $\zeta_i = \exp(v_i)$		$p\left(\zeta_i > 1 \boldsymbol{y}\right)$	
< 0.5 0.5 - 0.9 0.9 - 1.1 1.1 - 1.24 > 1.25		< 0. 0.1 0.9 0.9 0.9 > 0.9 > 0.9 > 0.9		

Motivation	Data	Methods	Results	Discussion
Future work	and questions			

- Temporal changes of the spatially structured error.
- Varying weekday effect along the year.
- Random walks to model possible nonlinear climatic effects.
- Examine whether decline in 2010 was due to a mast year.
- How does spBayes perform?

Motivation	Data	Methods	Results	Discussion
The ending				

Thank you very much for your attention!

Roe Deer Hunts

Arne Nothdurft