Bundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren und Landschaft

für Wald und Mensch

Forschung - Monitoring - Bildung

EFDM

European Forestry Dynamics Model

Ambros Berger

BFW – Wien (Federal Research Centre for Forest, Natural Hazards and Landscape, Vienna, Austria)

11-08-2013

Aims of EFDM European Forestry Dynamics Model

- Predict development of the forest
- Include management activities
- Simulate the effects of management decisions
- Simple and versatile model

Mathematical principle

Markov chain:

- Discrete time steps, new state depends only on last one
- State is a vector
- Transition is represented by matrices
 - P ... transition probability matrix without management
 - A ... activity matrix

$$x_{t+1} = A(t) \cdot P \cdot x_t$$

Calculation process

- 1. Initialization: description / formatting of data
- 2. Estimation of *P* (transitions without management)
- 3. Setting up the transitions conditional on activities and input of activity probabilities (A)
- 4. Building the total transition matrix
- 5. Input of the current state
- 6. Calculation of the next state
- 7. Repeat 3. 6.

Activity matrix

- Can change between time steps
- Can be chosen manually
- Possible activites:
 - Thinning / selective felling
 - Clearcut
 - Shelter system / no harvest
 - Calamities (storms, parasites, ...)
 - Ingrowth / afforestation

State vector

- Elements are units of land / plots
- Data divided according to factors (~stratified)
 - e.g. dominant species, sea level, age, owner, stemnumber/ha, stock (volume/ha) in classes
 - one element per combination of factor classes: number of plots that fall into this category
 - quickly a large number of elements

$$n = \prod_{i=1}^{k} n_i$$

- *n* ... size of state vector
- *k* ... number of factors
- n_i ... number of classes in the *i*th factor

Transition probability matrix

- Size *n* x *n*
- *p_{i,j}* denotes the probability of the transition of an element in state *j* to state *i*
- Data of plots at two points of time
- To completely fill the matrix P, data for all n² combinations are needed (unrealistic)
 - $-(10*15*3*3)^2 = 1,822,500$
- 2 remedies:
 - set some factors constant (e.g. sea level) to create blocks of zeros in P
 - use Bayesian estimator

The Bayesian estimator

- Simple model
- Additional data can be included easily
- Very flexible R code, can adapt to specific needs of different countries
- Developed at METLA, Finland
- Open source, EUPL licence

The stepwise implementation

- pool data over all constant factors
- choose prior, e.g. identity matrix
- calculate P (=posterior)
- split data by one factor
- use posterior as new prior, calculate new posterior for every factor class
- repeat until no constant factors are left
- weighting possible at each step

Implementation so far

- Only first international phase
- No activity matrix A yet in Austria
- Simplest model: state vector seen as age - volume matrix

Sweden

- Age-volume model
- For demonstration purposes: one unit of land, see how it develops

Sweden

• Used NFI data and compared to currently used growth simulator to predict 100 year development

	Area (mill. ha)	Initial mean volume (m3/ha)	Avg. increment over 100 years (m3/ha,year)				
Heureka	6.0	185	5.2				
Matrix Model	5.6	179	5.6				

Age-Volume

- Age often unknown, hard to estimate
- Requires even-aged stands
- "one-dimensional"
- Suitable for Scandinavian forests
- Austria: mostly uneven-aged stands
- Stem number instead of age

Data

- Plot data
- Two NFIs: 2000 2002 and 2007 2009
 - \rightarrow 7 year time steps in simulation
- "no harvest": no harvested trees between NFI periods, but still mostly managed forest
 - $\rightarrow\,$ expect growth on the high side
- Two constant factors: sea level, dominant species
- Variable factors: stem number/ha, volume/ha

Stem number - Volume

- Stands/plots can 'move' in any direction
- In general from bottom right to top left (high stemnr, low volume to low stemnr, high volume)

	200	300	450	600	1000	1500	2250	3500	5000	5000+	stemnumber/ha
100	93	5	0	18	19	12	17	11	1	0	
200	10	8	5	7	9	16	24	11	5	3	
300	13	4	8	8	11	11	8	12	7	0	
400	5	7	11	7	21	18	14	8	5	1	
500	2	4	12	13	12	8	5	5	3	4	
600	1	1	6	7	7	6	2	4	2	2	
700	1	3	4	6	6	8	5	1	2	1	
800	0	0	0	3	4	2	3	3	1	0	
900	0	1	1	2	4	0	1	1	0	0	
1000	0	0	0	0	3	1	0	0	0	0	
1100	0	1	0	1	0	1	0	2	0	0	
1200	0	0	0	0	1	0	0	0	0	0	
1300	0	0	0	0	0	0	0	0	0	0	
1400	0	0	0	0	0	0	0	0	0	0	
1400+	0	0	0	0	0	0	0	0	0	0	
volume m³/ha											

factors: sea level: below 900m, dominant species: spruce 616 plots

Stem number - Volume Simulation

volume m³/ha											
1400+											
1400					0.000	0.000					
1300			0.000			1.000					
1200			0.000		0.002					0.000	
1100		0.002		0.002		0.002		0.003			
1000					0.005	0.002					
900		0.002	0.002	0.003	0.006		0.002	0.002			
800				0.005	0.006	0.003	0.005	0.005	0.002		
700	0.002	0.005	0.006	0.009	0.009	0.013	0.008	0.002	0.003	0.002	
600	0.002	0.002	0.009	0.011	0.011	0.009	0.003	0.006	0.003	0.003	
500	0.003	0.006	0.019	0.021	0.019	0.013	0.008	0.008	0.005	0.006	
400	0.008	0.011	0.017	0.011	0.033	0.028	0.022	0.013	0.008	0.002	
300	0.021	0.006	0.013	0.013	0.017	0.017	0.013	0.019	0.011		
200	0.016	0.013	0.008	0.011	0.014	0.025	0.038	0.017	0.008	0.005	
100	0.147	0.008		0.028	0.030	0.019	0.027	0.017	0.002		
	200	300	450	600	1000	1500	2250	3500	5000	5000+	stemnumber/h

0 years, 1185 stems, 291 m³

volume m³/ha											
1400+					0.006		0.002				
1400			0.001		0.008	0.011	0.002	0.001			
1300		0.003	0.002	0.007	0.005	0.008	0.003	0.003		0.003	
1200	(LIII)			0.009	0.007	0.018	0.005	0.003	0.002	0.001	
1100		0.000	0.001	0.004	0.009	0.010	0.016	0.005	0.005	0.002	
1000		0.002	0.006	0.010	0.018	0.008	0.010	0.002	0.003	0.000	
900		0.005	0.011	0.017	0.023	0.020	0.010	0.004	0.001	0.000	
800	0.001	0.026	0.014	0.016	0.021	0.015	0.011	0.005	0.001	0.001	
700	0.001	0.011	0.015	0.014	0.029	0.017	0.009	0.007	0.002	0.002	
600	0.003	0.026	0.020	0.010	0.022	0.020	0.009	0.005	0.001	0.001	
500	0.011	0.023	0.014	0.008	0.022	0.016	0.010	0.004	0.002	0.001	
400	0.010	0.015	0.010	0.005	0.015	0.010	0.006	0.004	0.002	0.002	
300	0.013	0.010	0.007	0.007	0.008	0.006	0.005	0.004	0.001	0.001	
200	0.016	0.003	0.003	0.002	0.005	0.004	0.003	0.004	0.002	0.001	
100	0.035	0.001	0.001	0.002	0.006	0.003	0.003	0.003	0.001	0.000	
	200	300	450	600	1000	1500	2250	3500	5000	5000+	stemnumber/ha

70 years, 1045 stems, 645 m³

olume m³/ha											
1400+					0.003		0.000				
1400			0.000		0.002	0.002	0.001	0.000			
1300		0.001	0.001	0.002	0.002	0.001	0.001	0.001		0.001	
1200				0.004	0.003	0.005	0.003	0.002	0.001	0.000	
1100		0.000	0.000	0.002	0.005	0.005	0.009	0.005	0.002	0.001	
1000		0.001	0.004	0.006	0.010	0.005	0.007	0.002	0.003	0.001	
900		0.003	0.007	0.011	0.015	0.014	0.009	0.005	0.002	0.000	
800	0.001	0.013	0.009	0.012	0.016	0.013	0.013	0.007	0.002	0.001	
700	0.001	0.008	0.012	0.011	0.023	0.018	0.013	0.013	0.005	0.004	
600	0.002	0.017	0.018	0.011	0.024	0.024	0.015	0.010	0.004	0.003	
500	0.009	0.018	0.015	0.010	0.029	0.025	0.021	0.009	0.005	0.003	
400	0.008	0.015	0.013	0.008	0.024	0.021	0.016	0.013	0.005	0.005	
300	0.013	0.012	0.011	0.011	0.015	0.014	0.014	0.011	0.003	0.003	
200	0.017	0.005	0.005	0.004	0.010	0.008	0.007	0.007	0.003	0.001	
100	0.033	0.002	0.001	0.003	0.008	0.005	0.005	0.004	0.001	0.000	
	200	300	450	600	1000	1500	2250	3500	5000	5000+	stemnumber/ha

35 years, 1270 stems, 522 m³

volume m³/ha											
1400+					0.000		0.000				
1400			0.017		0 138	0.532	0.000	0.051			
1300		0.073	0.000	0.133	0.000	0.000	0.000	0.000		0.015	
1200				0.000	0.000	0.000	0.000	0.000	0.007	0.004	
1100			0.000	0.000	0.000	0.000	0.000	0.000	0.024	0.007	
1000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
900		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
800	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
700	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
600	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
400	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
300	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
200	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
100	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	200	200	150	000	4000	4500	2250	2500	5000	E000 .	

7000 years, 1302 stems, 1317 m³

Dynamics of the model

- "two-dimensional"
- Land units can "move in any direction"

Properties of the model

- Markov Chain
- Positive semidefinite matrix
- Asymptotically converges to stable state, independently of initial state
- Eigenvector to the biggest Eigenvalue
- Converges very slowly: after 1000 simulated years still not close to stable state
- Based on one 7 year time step
- No long term reliability

Results

- Good (very plausible) short term results
- Overall average annual growth ~7m³/ha
- Without mortality and calamities ~9m³/ha
- Managed forest higher increment than unmanaged
- Sea level trend: lower growth at high elevation
- Compares well to NFI results
- Little data for high volume classes reason for unrealistic long term results?

Other countries

- Finland similar to Sweden
- France simulated individual trees, used diameter classes
- Portugal: Eucalyptus plantations
 Two simulations:
 - 1 No management
 - 1. No management
 - 2. Management and fire

Future prospects

- Second phase will start soon
- Inclusion of more countries
- Inclusion of management activity matrix
- Already partly done for Sweden using 5 management groups
- Include forest products and services
 - biomass
 - harvested wood in terms of timber assortments
- Harmonization across Europe

Acknowledgements

JOINT RESEARCH CENTRE

The European Commission's in-house science service

METLA House Reserve Re

Dr. Tuula Packalen Seija Sirkiä

Swedish University of Agricultural Sciences Dr. Ola Sallnäs

Institut für Waldinventur

Thank you for your attention!

